Modes of Metabolic Compensation during Mitochondrial Disease Using the Drosophila Model of ATP6 Dysfunction
نویسندگان
چکیده
Numerous mitochondrial DNA mutations cause mitochondrial encephalomyopathy: a collection of related diseases for which there exists no effective treatment. Mitochondrial encephalomyopathies are complex multisystem diseases that exhibit a relentless progression of severity, making them both difficult to treat and study. The pathogenic and compensatory metabolic changes that are associated with chronic mitochondrial dysfunction are not well understood. The Drosophila ATP6(1) mutant models human mitochondrial encephalomyopathy and allows the study of metabolic changes and compensation that occur throughout the lifetime of an affected animal. ATP6(1)animals have a nearly complete loss of ATP synthase activity and an acute bioenergetic deficit when they are asymptomatic, but surprisingly we discovered no chronic bioenergetic deficit in these animals during their symptomatic period. Our data demonstrate dynamic metabolic compensatory mechanisms that sustain normal energy availability and activity despite chronic mitochondrial complex V dysfunction resulting from an endogenous mutation in the mitochondrial DNA. ATP6(1)animals compensate for their loss of oxidative phosphorylation through increases in glycolytic flux, ketogenesis and Kreb's cycle activity early during pathogenesis. However, succinate dehydrogenase activity is reduced and mitochondrial supercomplex formation is severely disrupted contributing to the pathogenesis seen in ATP6(1) animals. These studies demonstrate the dynamic nature of metabolic compensatory mechanisms and emphasize the need for time course studies in tractable animal systems to elucidate disease pathogenesis and novel therapeutic avenues.
منابع مشابه
Exercise during adolescence attenuated depressive-like behaviors and hippocampal mitochondrial dysfunction following early life stress in adult male rats
Purpose: In this study, we assumed that treating animals with an antidepressant agents or voluntary running wheel exercise (RW) during adolescence may have protective effects against early life stress (ELS) which can impact on behavior and mitochondrial function. Evidence indicates that ELS has deleterious effects on brain and behavior and increases the risk of mental disorders such as depressi...
متن کاملExercise during adolescence attenuated depressive-like behaviors and hippocampal mitochondrial dysfunction following early life stress in adult male rats
Purpose: In this study, we assumed that treating animals with an antidepressant agents or voluntary running wheel exercise (RW) during adolescence may have protective effects against early life stress (ELS) which can impact on behavior and mitochondrial function. Evidence indicates that ELS has deleterious effects on brain and behavior and increases the risk of mental disorders such as depressi...
متن کاملThe Effect of Fibroblast Growth Factor 21 on a Cellular Model of Alzheimer's Disease with Emphasis on Cell Viability and Mitochondrial Membrane Potential
Background and Objective: Alzheimer’s disease (AD) is a neurodegenerative disorder which is associated with extracellular accumulation of amyloid beta (Aβ) plaques. AD is accompanied by mitochondrial dysfunction and energy metabolism reduction. Fibroblast growth factor 21 (FGF21) is an endogenous polypeptide which its beneficial effects have been demonstrated on mitochondrial function, energy m...
متن کاملRepeated Administration of Mercury Accelerates Progression of Multiple Sclerosis through Mitochondrial Dysfunction
Multiple Sclerosis (MS) is a neurodegenerative and autoimmune disease that it’s molecular etiology and factors involving in its progression remains unknown. In this study for evaluation effect of mercuric on progression of MS we investigated the additive effect of mercuric sulfide on the brain mitochondrial dysfunction in experimental autoimmune encephalomyelitis (EAE) model of MS in C57BL/6 mi...
متن کاملRelationship between Mitochondrial Dysfunction and Multiple Sclerosis: A Review Study
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system that inflammation, demyelination, oligodendrocyte loss, gliosis, axonal injury and neurodegeneration are the main histopathological hallmarks of the disease. Although MS was classically thought as a demyelinating disease, but axonal injury occurs commonly in acute inflammatory lesions. In MS mi...
متن کامل